Localized Rademacher Complexities
نویسندگان
چکیده
We investigate the behaviour of global and local Rademacher averages. We present new error bounds which are based on the local averages and indicate how data-dependent local averages can be estimated without a priori knowledge of the class at hand.
منابع مشابه
Rademacher Complexities and Bounding the Excess Risk in Active Learning
Sequential algorithms of active learning based on the estimation of the level sets of the empirical risk are discussed in the paper. Localized Rademacher complexities are used in the algorithms to estimate the sample sizes needed to achieve the required accuracy of learning in an adaptive way. Probabilistic bounds on the number of active examples have been proved and several applications to bin...
متن کاملRejoinder: 2004 Ims Medallion Lecture: Local Rademacher Complexities and Oracle Inequalities in Risk Minimization
of the true risk function F ∋ f 7→ Pf. The first quantity of interest is the L2-diameter of this set, D(F ; δ), and the second one is the function φn(F ; δ) that is equal to the expected supremum of empirical process indexed by the differences f − g, f, g ∈F(δ). These two functions are then combined in the expression Ūn(δ; t) that has its roots in Talagrand’s concentration inequalities for empi...
متن کاملRademacher and Gaussian Complexities: Risk Bounds and Structural Results
Abstract We investigate the use of certain data-dependent estimates of the complexity of a function class, called Rademacher and Gaussian complexities. In a decision theoretic setting, we prove general risk bounds in terms of these complexities. We consider function classes that can be expressed as combinations of functions from basis classes and show how the Rademacher and Gaussian complexitie...
متن کاملLocal Rademacher complexity bounds based on covering numbers
This paper provides a general result on controlling local Rademacher complexities, which captures in an elegant form to relate the complexities with constraint on the expected norm to the corresponding ones with constraint on the empirical norm. This result is convenient to apply in real applications and could yield refined local Rademacher complexity bounds for function classes satisfying gene...
متن کاملEarly stopping for kernel boosting algorithms: A general analysis with localized complexities
Early stopping of iterative algorithms is a widely-used form of regularization in statistics, commonly used in conjunction with boosting and related gradient-type algorithms. Although consistency results have been established in some settings, such estimators are less well-understood than their analogues based on penalized regularization. In this paper, for a relatively broad class of loss func...
متن کامل